

Most common organisms studied

(wadable streams)

• Fish

Algae

Macroinvertebrates

Why use benthic macroinvertebrates as water quality indicators?

- They are affected by the physical, chemical, and biological conditions of the stream
- They are relatively immobile and show the effects of short and long term pollution events
- Some are very intolerant of pollution
- They are a critical part of the food web
 - Primary link between the basis of the food web (algae, organic detritus, microorganisms)

And

Fish

They are relatively easy and inexpensive to sample and identify

Sensitive Taxa

Ephemeroptera (mayflies)

Plecoptera (stoneflies)

Trichoptera (caddisflies)

Quality Assurance/Quality Control

- Documents your entire monitoring plan
 - ➤ Where, how, what, etc.
- ➤ Written guidance that ensures everyone knows what is to be done and exactly how it will be done
- > Helps others understand your data

Quality Assurance

Quality assurance is a system you put into place to ensure that your data will meet standards of quality that you define.

What is Quality Assurance (QA) -

A management system which includes:

- organization and planning
- data collection
- quality control
- documentation
- evaluation
- reporting

Quality Control

- Accuracy: how close to the real results you are
- Precision: how reproducible your results are

Figure 1: Precision and Accuracy Illustrated

Monitoring Study Design Process

1. What is already known?

10. Who will complete the tasks?

2. Why are you monitoring?

9. How will you manage & present the data?

3. How will you use the data?

8. What are your QA/QC measures?

4. What will you monitor?

7. When will you monitor?

6. Where will you monitor?

5. How will you monitor?

Why are you monitoring?

It is important that your group reaches a consensus about the purpose of your monitoring program. Identify questions that if answered, could provide information to influence decision-makers and your group's targeted data users. Then, determine how monitoring can help answer these questions and achieve your groups' goals.

Examples:

- Is the water quality meeting or exceeding state standards?
- How are failing septic systems affecting water quality?
- How will proposed development affect water quality?
- Is the local quarry operation in compliance?

How will you use the Data Collected?

Match your monitoring purpose to your data users.

Potential Data Users

- Watershed group & volunteer monitors
- Planning commissions
- State agencies for use in the 305(b) report and enforcement of 303(d) list

How will you monitor?

Determining how you will monitor involves making choices as to the appropriate sampling methods that meet your data quality objectives.

Kicknet

Common procedure:

- conduct 2 -4 separate kicks, often from a 100-yard reach
- composit samples
- sort and ID in streamside or lab
- 100 200 organism subsampling common

Kicknet

Advantages:

- rapid screening of large number of sites
- easy, fast, inexpensive
- standardized protocols

Disadvantages:

- qualitative
- limited habitat assessment

D-Frame (dip) net

- total of 20 jabs taken from all major habitat types
- different habitats sampled in rough proportion to their area

Disadvantage:

qualitative

Advantage:

- quick and easy
- can sample multiple habitats

Surber Sampler

Advantages

Quantitative

Disadvantages

- Riffle habitat only
- Longer processing time and resources may be required

Examples:

Rock bag

Leaf packs

Hester dendy

Artificial Substrate

Advantages:

- Can sample difficult or unsafe areas
- Inexpensive, easy design
- mimic natural substrate

Disadvantages:

- need to place and retrieve several weeks later
- artificial environment
- limited habitat

Reference Site

Reference sites: locations in similar waterbodies and habitat types at which data can be selected for comparison with test sites.

Characteristics of Ideal Reference Sites

- Pristine probably does not exist so look for minimally impaired.
 - Extensive, natural vegetation
 - Diversity of substrate materials and channel structure
 - No upstream impoundments
 - Minimal nonpoint source problems (agriculture, urban, logging, mining)

When will you monitor?

- Time of Year: The macro community changes with the seasons
 - Spring:
 - Many insects are fairly large & mature, therefore easier to identify
 - Macros collected in Spring have generally been active as larvae since September and thus the number and types collected reflect at least several months of environmental variability
 - Late Summer
 - Hot temperature, low flow
 - Macro's may be most stressed
- Frequency

 consider resources and data requirements

QA/QC - Sampling

- Equipment
 - mesh size
- Approaching sampling site
- Consistency of sampling
 - Area of kick?
 - Time of kick?
 - Kick or kick & rub?
- Have experienced members in each team
- Thoroughly rinse equipment
- Chain of custody

Quality Control - Field

- Labels/records
 - Sampling location, site number, sample number, who collected the sample
 - Waterproof pen
 - Labeling collection jars

```
MSWC21, ____am _pm
WhiteClayGreek Streamwatch
DE:NewCastleCountry Suber#_____
3941'31'N 7543'33' W
Cd: 24-Mach-01
```

Quality Control - Sorting

Many programs have a monitoring coordinator or QC leader to verify sorts, counts, ID

- Verify nets, buckets clean & rinsed
- Check debris (field or lab)
 - Checks preformed by coordinator or qualified volunteer
- Keep a voucher collection
- Keep a sample log

Quality Control - Identification

- Resources keys, guides, manuals, reference collection
- Check ID's
 - Internal vs external
 - Field vouchers
- Check counts
- Record data
- Keep sample log

Important Rules of Consistency for Counting

- Do not count terrestrial insects.
- Do not count earthworms.
- Do not count empty cases.
- Do not count cast skins.
- Do not count adult Diptera, but newly emerged adults may be placed in the vial.
- Do not count body parts, if an insect is dismembered, the only part to be counted is the head. Whenever possible all the body parts can be reunited in the sample.
- Use of the counter, especially with large numbers, enables the person doing the counting to be more accurate.

Training

Schedule regular QA/QC trainings Schedule prior to collection and/or identification

Don't forget the data!

EPHEMEROPTERA	-			
EPHEMERIDAE	4	CG	BU	1
TRICORYTHIDAE	4	CG	SP	
CAENIDAE	4	CG	SP	
EPHEMERELLIDAE	4	CG	CR	599
OLIGONEURIIDAE	2	CF	S W	
LEPTOPHLEBIIDAE	2	CG	CR	3
BAETIDAE		CG	CG	34
HEPTAGENIIDAE	4	SC	CG	39
POTAMANTHIDAE	4	CG	BU	
POLYMITARCYIDAE	2	CG	BU	
AMELETIDAE				

Kingdom Animalia

Phylum Arthropoda

Class Insecta

Order Ephemeroptera

Family Baetidae

Genus Baetis

Species cingulatus

